Beast - Music Synthesizer and Composer  0.11.1+10.g2da35 File Reference
#include "bsemathsignal.hh"
Include dependency graph for


#define SCALED_INTERVAL(scale, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12)
#define EQTEMP_12_TET(scale)
#define EQTEMP_7_TET(scale)
#define EQTEMP_5_TET(scale)
#define DIATONIC_SCALE(scale)
#define INDIAN_SCALE(scale)
#define PENTATONIC_5_LIMIT(scale)
#define PENTATONIC_BLUES(scale)
#define PENTATONIC_GOGO(scale)
#define QCOMMA_MEANTONE(scale)
#define SILBERMANN_SORGE(scale)
#define SQRT2_2
#define SQRT4_2
#define SQRT4_8
#define SQRT3_2
#define SQRT3_4
#define YOUNG_TEMPERAMENT(scale)


void bse_frequency_modulator (const BseFrequencyModulator *fm, uint n_values, const float *ifreq, const float *ifmod, float *fm_buffer)
double bse_window_bartlett (double x)
double bse_window_blackman (double x)
double bse_window_cos (double x)
double bse_window_hamming (double x)
double bse_window_sinc (double x)
double bse_window_rect (double x)
double bse_cent_tune (double fine_tune)
const doublebse_semitone_table_from_tuning (Bse::MusicalTuning musical_tuning)
double bse_transpose_factor (Bse::MusicalTuning musical_tuning, int index)
void _bse_init_signal (void)
double bse_approx_atan1_prescale (double boost_amount)


const double *const bse_cent_table

Function Documentation

double bse_approx_atan1_prescale ( double  boost_amount)
boost_amountboost amount between [0..1]
prescale factor for bse_approx_atan1()

Calculate the prescale factor for bse_approx_atan1(x*prescale) from a linear boost factor, where 0.5 amounts to prescale=1.0, 1.0 results in maximum boost and 0.0 results in maximum attenuation.

Here is the call graph for this function:

double bse_cent_tune ( double  fine_tune)
fine_tunefine tuning in cent
a factor corresponding to this

This function computes a factor which corresponds to a given fine tuning in cent. The result can be used as factor for the frequency or the play speed. It is similar to the bse_cent_tune_fast(), but also works for non-integer floating point values. It is however computationally more expensive.

Here is the call graph for this function: